ABC: A System for Sequential Synthesis and Verification
 
Loading...
Searching...
No Matches
adler32.c
Go to the documentation of this file.
1/* adler32.c -- compute the Adler-32 checksum of a data stream
2 * Copyright (C) 1995-2007 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/* @(#) $Id$ */
7
8#include <stdio.h>
9#include <stdlib.h>
10#include <string.h>
12
13#include "zutil.h"
14
16
17#define local static
18
19local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2);
20
21#define BASE 65521UL /* largest prime smaller than 65536 */
22#define NMAX 5552
23/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
24
25#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
26#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
27#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
28#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
29#define DO16(buf) DO8(buf,0); DO8(buf,8);
30
31/* use NO_DIVIDE if your processor does not do division in hardware */
32#ifdef NO_DIVIDE
33# define MOD(a) \
34 do { \
35 if (a >= (BASE << 16)) a -= (BASE << 16); \
36 if (a >= (BASE << 15)) a -= (BASE << 15); \
37 if (a >= (BASE << 14)) a -= (BASE << 14); \
38 if (a >= (BASE << 13)) a -= (BASE << 13); \
39 if (a >= (BASE << 12)) a -= (BASE << 12); \
40 if (a >= (BASE << 11)) a -= (BASE << 11); \
41 if (a >= (BASE << 10)) a -= (BASE << 10); \
42 if (a >= (BASE << 9)) a -= (BASE << 9); \
43 if (a >= (BASE << 8)) a -= (BASE << 8); \
44 if (a >= (BASE << 7)) a -= (BASE << 7); \
45 if (a >= (BASE << 6)) a -= (BASE << 6); \
46 if (a >= (BASE << 5)) a -= (BASE << 5); \
47 if (a >= (BASE << 4)) a -= (BASE << 4); \
48 if (a >= (BASE << 3)) a -= (BASE << 3); \
49 if (a >= (BASE << 2)) a -= (BASE << 2); \
50 if (a >= (BASE << 1)) a -= (BASE << 1); \
51 if (a >= BASE) a -= BASE; \
52 } while (0)
53# define MOD4(a) \
54 do { \
55 if (a >= (BASE << 4)) a -= (BASE << 4); \
56 if (a >= (BASE << 3)) a -= (BASE << 3); \
57 if (a >= (BASE << 2)) a -= (BASE << 2); \
58 if (a >= (BASE << 1)) a -= (BASE << 1); \
59 if (a >= BASE) a -= BASE; \
60 } while (0)
61#else
62# define MOD(a) a %= BASE
63# define MOD4(a) a %= BASE
64#endif
65
66/* ========================================================================= */
67uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len)
68{
69 unsigned long sum2;
70 unsigned n;
71
72 /* split Adler-32 into component sums */
73 sum2 = (adler >> 16) & 0xffff;
74 adler &= 0xffff;
75
76 /* in case user likes doing a byte at a time, keep it fast */
77 if (len == 1) {
78 adler += buf[0];
79 if (adler >= BASE)
80 adler -= BASE;
81 sum2 += adler;
82 if (sum2 >= BASE)
83 sum2 -= BASE;
84 return adler | (sum2 << 16);
85 }
86
87 /* initial Adler-32 value (deferred check for len == 1 speed) */
88 if (buf == Z_NULL)
89 return 1L;
90
91 /* in case short lengths are provided, keep it somewhat fast */
92 if (len < 16) {
93 while (len--) {
94 adler += *buf++;
95 sum2 += adler;
96 }
97 if (adler >= BASE)
98 adler -= BASE;
99 MOD4(sum2); /* only added so many BASE's */
100 return adler | (sum2 << 16);
101 }
102
103 /* do length NMAX blocks -- requires just one modulo operation */
104 while (len >= NMAX) {
105 len -= NMAX;
106 n = NMAX / 16; /* NMAX is divisible by 16 */
107 do {
108 DO16(buf); /* 16 sums unrolled */
109 buf += 16;
110 } while (--n);
111 MOD(adler);
112 MOD(sum2);
113 }
114
115 /* do remaining bytes (less than NMAX, still just one modulo) */
116 if (len) { /* avoid modulos if none remaining */
117 while (len >= 16) {
118 len -= 16;
119 DO16(buf);
120 buf += 16;
121 }
122 while (len--) {
123 adler += *buf++;
124 sum2 += adler;
125 }
126 MOD(adler);
127 MOD(sum2);
128 }
129
130 /* return recombined sums */
131 return adler | (sum2 << 16);
132}
133
134/* ========================================================================= */
136{
137 unsigned long sum1;
138 unsigned long sum2;
139 unsigned rem;
140
141 /* the derivation of this formula is left as an exercise for the reader */
142 rem = (unsigned)(len2 % BASE);
143 sum1 = adler1 & 0xffff;
144 sum2 = rem * sum1;
145 MOD(sum2);
146 sum1 += (adler2 & 0xffff) + BASE - 1;
147 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
148 if (sum1 >= BASE) sum1 -= BASE;
149 if (sum1 >= BASE) sum1 -= BASE;
150 if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
151 if (sum2 >= BASE) sum2 -= BASE;
152 return sum1 | (sum2 << 16);
153}
154
155/* ========================================================================= */
157{
158 return adler32_combine_(adler1, adler2, len2);
159}
160
162{
163 return adler32_combine_(adler1, adler2, len2);
164}
165
166
168
#define ABC_NAMESPACE_IMPL_START
#define ABC_NAMESPACE_IMPL_END
uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2)
Definition adler32.c:161
#define local
Definition adler32.c:17
#define NMAX
Definition adler32.c:22
#define DO16(buf)
Definition adler32.c:29
#define BASE
Definition adler32.c:21
uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len)
Definition adler32.c:67
#define MOD(a)
Definition adler32.c:62
#define MOD4(a)
Definition adler32.c:63
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2)
Definition adler32.c:135
uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2)
Definition adler32.c:156
#define ZEXPORT
Definition zconf.h:322
unsigned int uInt
Definition zconf.h:335
#define z_off_t
Definition zconf.h:396
#define z_off64_t
Definition zconf.h:402
unsigned long uLong
Definition zconf.h:336
Byte FAR Bytef
Definition zconf.h:342
#define Z_NULL
Definition zlib.h:216