ABC: A System for Sequential Synthesis and Verification
 
Loading...
Searching...
No Matches
cswTable.c File Reference
#include "cswInt.h"
Include dependency graph for cswTable.c:

Go to the source code of this file.

Functions

ABC_NAMESPACE_IMPL_START unsigned Csw_CutHash (Csw_Cut_t *pCut)
 DECLARATIONS ///.
 
int Csw_TableCountCuts (Csw_Man_t *p)
 
void Csw_TableCutInsert (Csw_Man_t *p, Csw_Cut_t *pCut)
 
Aig_Obj_tCsw_TableCutLookup (Csw_Man_t *p, Csw_Cut_t *pCut)
 

Function Documentation

◆ Csw_CutHash()

ABC_NAMESPACE_IMPL_START unsigned Csw_CutHash ( Csw_Cut_t * pCut)

DECLARATIONS ///.

CFile****************************************************************

FileName [cswTable.c]

SystemName [ABC: Logic synthesis and verification system.]

PackageName [Cut sweeping.]

Synopsis []

Author [Alan Mishchenko]

Affiliation [UC Berkeley]

Date [Ver. 1.0. Started - July 11, 2007.]

Revision [

Id
cswTable.c,v 1.00 2007/07/11 00:00:00 alanmi Exp

] FUNCTION DEFINITIONS /// Function*************************************************************

Synopsis [Computes hash value of the cut.]

Description []

SideEffects []

SeeAlso []

Definition at line 45 of file cswTable.c.

46{
47 static int s_FPrimes[128] = {
48 1009, 1049, 1093, 1151, 1201, 1249, 1297, 1361, 1427, 1459,
49 1499, 1559, 1607, 1657, 1709, 1759, 1823, 1877, 1933, 1997,
50 2039, 2089, 2141, 2213, 2269, 2311, 2371, 2411, 2467, 2543,
51 2609, 2663, 2699, 2741, 2797, 2851, 2909, 2969, 3037, 3089,
52 3169, 3221, 3299, 3331, 3389, 3461, 3517, 3557, 3613, 3671,
53 3719, 3779, 3847, 3907, 3943, 4013, 4073, 4129, 4201, 4243,
54 4289, 4363, 4441, 4493, 4549, 4621, 4663, 4729, 4793, 4871,
55 4933, 4973, 5021, 5087, 5153, 5227, 5281, 5351, 5417, 5471,
56 5519, 5573, 5651, 5693, 5749, 5821, 5861, 5923, 6011, 6073,
57 6131, 6199, 6257, 6301, 6353, 6397, 6481, 6563, 6619, 6689,
58 6737, 6803, 6863, 6917, 6977, 7027, 7109, 7187, 7237, 7309,
59 7393, 7477, 7523, 7561, 7607, 7681, 7727, 7817, 7877, 7933,
60 8011, 8039, 8059, 8081, 8093, 8111, 8123, 8147
61 };
62 unsigned uHash;
63 int i;
64 assert( pCut->nFanins <= 16 );
65 uHash = 0;
66 for ( i = 0; i < pCut->nFanins; i++ )
67 uHash ^= pCut->pFanins[i] * s_FPrimes[i];
68 return uHash;
69}
int pFanins[0]
Definition cswInt.h:66
char nFanins
Definition cswInt.h:65
#define assert(ex)
Definition util_old.h:213
Here is the caller graph for this function:

◆ Csw_TableCountCuts()

int Csw_TableCountCuts ( Csw_Man_t * p)

Function*************************************************************

Synopsis [Returns the total number of cuts in the table.]

Description []

SideEffects []

SeeAlso []

Definition at line 82 of file cswTable.c.

83{
84 Csw_Cut_t * pEnt;
85 int i, Counter = 0;
86 for ( i = 0; i < p->nTableSize; i++ )
87 for ( pEnt = p->pTable[i]; pEnt; pEnt = pEnt->pNext )
88 Counter++;
89 return Counter;
90}
struct Csw_Cut_t_ Csw_Cut_t
Definition cswInt.h:53
Cube * p
Definition exorList.c:222
Csw_Cut_t * pNext
Definition cswInt.h:58
Here is the caller graph for this function:

◆ Csw_TableCutInsert()

void Csw_TableCutInsert ( Csw_Man_t * p,
Csw_Cut_t * pCut )

Function*************************************************************

Synopsis [Adds the cut to the hash table.]

Description []

SideEffects []

SeeAlso []

Definition at line 103 of file cswTable.c.

104{
105 int iEntry = Csw_CutHash(pCut) % p->nTableSize;
106 pCut->pNext = p->pTable[iEntry];
107 p->pTable[iEntry] = pCut;
108}
ABC_NAMESPACE_IMPL_START unsigned Csw_CutHash(Csw_Cut_t *pCut)
DECLARATIONS ///.
Definition cswTable.c:45
Here is the call graph for this function:
Here is the caller graph for this function:

◆ Csw_TableCutLookup()

Aig_Obj_t * Csw_TableCutLookup ( Csw_Man_t * p,
Csw_Cut_t * pCut )

Function*************************************************************

Synopsis [Returns an equivalent node if it exists.]

Description []

SideEffects []

SeeAlso []

Definition at line 121 of file cswTable.c.

122{
123 Aig_Obj_t * pRes = NULL;
124 Csw_Cut_t * pEnt;
125 unsigned * pTruthNew, * pTruthOld;
126 int iEntry = Csw_CutHash(pCut) % p->nTableSize;
127 for ( pEnt = p->pTable[iEntry]; pEnt; pEnt = pEnt->pNext )
128 {
129 if ( pEnt->nFanins != pCut->nFanins )
130 continue;
131 if ( pEnt->uSign != pCut->uSign )
132 continue;
133 if ( memcmp( pEnt->pFanins, pCut->pFanins, sizeof(int) * pCut->nFanins ) )
134 continue;
135 pTruthOld = Csw_CutTruth(pEnt);
136 pTruthNew = Csw_CutTruth(pCut);
137 if ( (pTruthOld[0] & 1) == (pTruthNew[0] & 1) )
138 {
139 if ( Kit_TruthIsEqual( pTruthOld, pTruthNew, pCut->nFanins ) )
140 {
141 pRes = Aig_ManObj( p->pManRes, pEnt->iNode );
142 assert( pRes->fPhase == Aig_ManObj( p->pManRes, pCut->iNode )->fPhase );
143 break;
144 }
145 }
146 else
147 {
148 if ( Kit_TruthIsOpposite( pTruthOld, pTruthNew, pCut->nFanins ) )
149 {
150 pRes = Aig_Not( Aig_ManObj( p->pManRes, pEnt->iNode ) );
151 assert( Aig_Regular(pRes)->fPhase != Aig_ManObj( p->pManRes, pCut->iNode )->fPhase );
152 break;
153 }
154 }
155 }
156 return pRes;
157}
struct Aig_Obj_t_ Aig_Obj_t
Definition aig.h:51
unsigned int fPhase
Definition aig.h:78
unsigned uSign
Definition cswInt.h:61
int iNode
Definition cswInt.h:62
int memcmp()
Here is the call graph for this function:
Here is the caller graph for this function: