ABC: A System for Sequential Synthesis and Verification
 
Loading...
Searching...
No Matches
saigInd.c File Reference
#include "saig.h"
#include "sat/cnf/cnf.h"
#include "sat/bsat/satSolver.h"
Include dependency graph for saigInd.c:

Go to the source code of this file.

Functions

ABC_NAMESPACE_IMPL_START int Saig_ManStatesAreEqual (sat_solver *pSat, Vec_Int_t *vState, int nRegs, int i, int k)
 DECLARATIONS ///.
 
int Saig_ManAddUniqueness (sat_solver *pSat, Vec_Int_t *vState, int nRegs, int i, int k, int *pnSatVarNum, int *pnClauses, int fVerbose)
 
int Saig_ManInduction (Aig_Man_t *p, int nTimeOut, int nFramesMax, int nConfMax, int fUnique, int fUniqueAll, int fGetCex, int fVerbose, int fVeryVerbose)
 

Function Documentation

◆ Saig_ManAddUniqueness()

int Saig_ManAddUniqueness ( sat_solver * pSat,
Vec_Int_t * vState,
int nRegs,
int i,
int k,
int * pnSatVarNum,
int * pnClauses,
int fVerbose )

Function*************************************************************

Synopsis [Add uniqueness constraint.]

Description []

SideEffects []

SeeAlso []

Definition at line 91 of file saigInd.c.

92{
93 int * pStateI = (int *)Vec_IntArray(vState) + nRegs * i;
94 int * pStateK = (int *)Vec_IntArray(vState) + nRegs * k;
95 int v, iVars, nSatVarsOld, RetValue, * pClause;
96 assert( i && k && i < k );
97 assert( nRegs * k <= Vec_IntSize(vState) );
98 // check if the states are available
99 for ( v = 0; v < nRegs; v++ )
100 if ( pStateI[v] >= 0 && pStateK[v] == -1 )
101 {
102 if ( fVerbose )
103 printf( "Cannot constrain an incomplete state.\n" );
104 return 0;
105 }
106 // add XORs
107 nSatVarsOld = *pnSatVarNum;
108 for ( v = 0; v < nRegs; v++ )
109 if ( pStateI[v] >= 0 )
110 {
111 *pnClauses += 4;
112 RetValue = Cnf_DataAddXorClause( pSat, pStateI[v], pStateK[v], (*pnSatVarNum)++ );
113 if ( RetValue == 0 )
114 {
115 if ( fVerbose )
116 printf( "SAT solver became UNSAT after adding a uniqueness constraint.\n" );
117 return 1;
118 }
119 }
120 // add OR clause
121 (*pnClauses)++;
122 iVars = 0;
123 pClause = ABC_ALLOC( int, nRegs );
124 for ( v = nSatVarsOld; v < *pnSatVarNum; v++ )
125 pClause[iVars++] = toLitCond( v, 0 );
126 assert( iVars <= nRegs );
127 RetValue = sat_solver_addclause( pSat, pClause, pClause + iVars );
128 ABC_FREE( pClause );
129 if ( RetValue == 0 )
130 {
131 if ( fVerbose )
132 printf( "SAT solver became UNSAT after adding a uniqueness constraint.\n" );
133 return 1;
134 }
135 return 0;
136}
#define ABC_ALLOC(type, num)
Definition abc_global.h:264
#define ABC_FREE(obj)
Definition abc_global.h:267
#define sat_solver_addclause
Definition cecSatG2.c:37
int Cnf_DataAddXorClause(void *pSat, int iVarA, int iVarB, int iVarC)
Definition cnfMan.c:804
#define assert(ex)
Definition util_old.h:213
Here is the call graph for this function:
Here is the caller graph for this function:

◆ Saig_ManInduction()

int Saig_ManInduction ( Aig_Man_t * p,
int nTimeOut,
int nFramesMax,
int nConfMax,
int fUnique,
int fUniqueAll,
int fGetCex,
int fVerbose,
int fVeryVerbose )

Function*************************************************************

Synopsis [Performs induction by unrolling timeframes backward.]

Description []

SideEffects []

SeeAlso []

Definition at line 149 of file saigInd.c.

150{
151 sat_solver * pSat;
152 Aig_Man_t * pAigPart = NULL;
153 Cnf_Dat_t * pCnfPart = NULL;
154 Vec_Int_t * vTopVarNums, * vState, * vTopVarIds = NULL;
155 Vec_Ptr_t * vTop, * vBot;
156 Aig_Obj_t * pObjPi, * pObjPiCopy, * pObjPo;
157 int i, k, f, Lits[2], status = -1, RetValue, nSatVarNum, nConfPrev;
158 int nOldSize, iReg, iLast, fAdded, nConstrs = 0, nClauses = 0;
159 abctime clk, nTimeToStop = nTimeOut ? nTimeOut * CLOCKS_PER_SEC + Abc_Clock() : 0;
160 assert( fUnique == 0 || fUniqueAll == 0 );
161 assert( Saig_ManPoNum(p) == 1 );
163
164 // start the top by including the PO
165 vBot = Vec_PtrAlloc( 100 );
166 vTop = Vec_PtrAlloc( 100 );
167 vState = Vec_IntAlloc( 1000 );
168 Vec_PtrPush( vTop, Aig_ManCo(p, 0) );
169 // start the array of CNF variables
170 vTopVarNums = Vec_IntAlloc( 100 );
171 // start the solver
172 pSat = sat_solver_new();
173 sat_solver_setnvars( pSat, 1000 );
174
175 // set runtime limit
176 if ( nTimeToStop )
177 sat_solver_set_runtime_limit( pSat, nTimeToStop );
178
179 // iterate backward unrolling
180 RetValue = -1;
181 nSatVarNum = 0;
182 if ( fVerbose )
183 printf( "Induction parameters: FramesMax = %5d. ConflictMax = %6d.\n", nFramesMax, nConfMax );
184 for ( f = 0; ; f++ )
185 {
186 if ( f > 0 )
187 {
188 Aig_ManStop( pAigPart );
189 Cnf_DataFree( pCnfPart );
190 }
191 clk = Abc_Clock();
192 // get the bottom
193 Aig_SupportNodes( p, (Aig_Obj_t **)Vec_PtrArray(vTop), Vec_PtrSize(vTop), vBot );
194 // derive AIG for the part between top and bottom
195 pAigPart = Aig_ManDupSimpleDfsPart( p, vBot, vTop );
196 // convert it into CNF
197 pCnfPart = Cnf_Derive( pAigPart, Aig_ManCoNum(pAigPart) );
198 Cnf_DataLift( pCnfPart, nSatVarNum );
199 nSatVarNum += pCnfPart->nVars;
200 nClauses += pCnfPart->nClauses;
201
202 // remember top frame var IDs
203 if ( fGetCex && vTopVarIds == NULL )
204 {
205 vTopVarIds = Vec_IntStartFull( Aig_ManCiNum(p) );
206 Aig_ManForEachCi( p, pObjPi, i )
207 {
208 if ( pObjPi->pData == NULL )
209 continue;
210 pObjPiCopy = (Aig_Obj_t *)pObjPi->pData;
211 assert( Aig_ObjIsCi(pObjPiCopy) );
212 if ( Saig_ObjIsPi(p, pObjPi) )
213 Vec_IntWriteEntry( vTopVarIds, Aig_ObjCioId(pObjPi) + Saig_ManRegNum(p), pCnfPart->pVarNums[Aig_ObjId(pObjPiCopy)] );
214 else if ( Saig_ObjIsLo(p, pObjPi) )
215 Vec_IntWriteEntry( vTopVarIds, Aig_ObjCioId(pObjPi) - Saig_ManPiNum(p), pCnfPart->pVarNums[Aig_ObjId(pObjPiCopy)] );
216 else assert( 0 );
217 }
218 }
219
220 // stitch variables of top and bot
221 assert( Aig_ManCoNum(pAigPart)-1 == Vec_IntSize(vTopVarNums) );
222 Aig_ManForEachCo( pAigPart, pObjPo, i )
223 {
224 if ( i == 0 )
225 {
226 // do not perform inductive strengthening
227// if ( f > 0 )
228// continue;
229 // add topmost literal
230 Lits[0] = toLitCond( pCnfPart->pVarNums[pObjPo->Id], f>0 );
231 if ( !sat_solver_addclause( pSat, Lits, Lits+1 ) )
232 assert( 0 );
233 nClauses++;
234 continue;
235 }
236 Lits[0] = toLitCond( Vec_IntEntry(vTopVarNums, i-1), 0 );
237 Lits[1] = toLitCond( pCnfPart->pVarNums[pObjPo->Id], 1 );
238 if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
239 assert( 0 );
240 Lits[0] = toLitCond( Vec_IntEntry(vTopVarNums, i-1), 1 );
241 Lits[1] = toLitCond( pCnfPart->pVarNums[pObjPo->Id], 0 );
242 if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
243 assert( 0 );
244 nClauses += 2;
245 }
246 // add CNF to the SAT solver
247 for ( i = 0; i < pCnfPart->nClauses; i++ )
248 if ( !sat_solver_addclause( pSat, pCnfPart->pClauses[i], pCnfPart->pClauses[i+1] ) )
249 break;
250 if ( i < pCnfPart->nClauses )
251 {
252// printf( "SAT solver became UNSAT after adding clauses.\n" );
253 RetValue = 1;
254 break;
255 }
256
257 // create new set of POs to derive new top
258 Vec_PtrClear( vTop );
259 Vec_PtrPush( vTop, Aig_ManCo(p, 0) );
260 Vec_IntClear( vTopVarNums );
261 nOldSize = Vec_IntSize(vState);
262 Vec_IntFillExtra( vState, nOldSize + Aig_ManRegNum(p), -1 );
263 Vec_PtrForEachEntry( Aig_Obj_t *, vBot, pObjPi, i )
264 {
265 assert( Aig_ObjIsCi(pObjPi) );
266 if ( Saig_ObjIsLo(p, pObjPi) )
267 {
268 pObjPiCopy = (Aig_Obj_t *)pObjPi->pData;
269 assert( pObjPiCopy != NULL );
270 Vec_PtrPush( vTop, Saig_ObjLoToLi(p, pObjPi) );
271 Vec_IntPush( vTopVarNums, pCnfPart->pVarNums[pObjPiCopy->Id] );
272
273 iReg = pObjPi->CioId - Saig_ManPiNum(p);
274 assert( iReg >= 0 && iReg < Aig_ManRegNum(p) );
275 Vec_IntWriteEntry( vState, nOldSize+iReg, pCnfPart->pVarNums[pObjPiCopy->Id] );
276 }
277 }
278 assert( Vec_IntSize(vState)%Aig_ManRegNum(p) == 0 );
279 iLast = Vec_IntSize(vState)/Aig_ManRegNum(p);
280 if ( fUniqueAll )
281 {
282 for ( i = 1; i < iLast-1; i++ )
283 {
284 nConstrs++;
285 if ( fVeryVerbose )
286 printf( "Adding constaint for state %2d and state %2d.\n", i, iLast-1 );
287 if ( Saig_ManAddUniqueness( pSat, vState, Aig_ManRegNum(p), i, iLast-1, &nSatVarNum, &nClauses, fVerbose ) )
288 break;
289 }
290 if ( i < iLast-1 )
291 {
292 RetValue = 1;
293 break;
294 }
295 }
296
297nextrun:
298 fAdded = 0;
299 // run the SAT solver
300 nConfPrev = pSat->stats.conflicts;
301 status = sat_solver_solve( pSat, NULL, NULL, (ABC_INT64_T)nConfMax, 0, 0, 0 );
302 if ( fVerbose )
303 {
304 printf( "Frame %4d : PI =%5d. PO =%5d. AIG =%5d. Var =%7d. Clau =%7d. Conf =%7d. ",
305 f, Aig_ManCiNum(pAigPart), Aig_ManCoNum(pAigPart), Aig_ManNodeNum(pAigPart),
306 nSatVarNum, nClauses, (int)pSat->stats.conflicts-nConfPrev );
307 ABC_PRT( "Time", Abc_Clock() - clk );
308 }
309 if ( status == l_Undef )
310 break;
311 if ( status == l_False )
312 {
313 RetValue = 1;
314 break;
315 }
316 assert( status == l_True );
317 // the problem is SAT - add more clauses
318 if ( fVeryVerbose )
319 {
320 Vec_IntForEachEntry( vState, iReg, i )
321 {
322 if ( i && (i % Aig_ManRegNum(p)) == 0 )
323 printf( "\n" );
324 if ( (i % Aig_ManRegNum(p)) == 0 )
325 printf( " State %3d : ", i/Aig_ManRegNum(p) );
326 printf( "%c", (iReg >= 0) ? ('0' + sat_solver_var_value(pSat, iReg)) : 'x' );
327 }
328 printf( "\n" );
329 }
330 if ( nFramesMax && f == nFramesMax - 1 )
331 {
332 // derive counter-example
333 assert( status == l_True );
334 if ( fGetCex )
335 {
336 int VarNum, iBit = 0;
337 Abc_Cex_t * pCex = Abc_CexAlloc( Aig_ManRegNum(p)-1, Saig_ManPiNum(p), 1 );
338 pCex->iFrame = 0;
339 pCex->iPo = 0;
340 Vec_IntForEachEntryStart( vTopVarIds, VarNum, i, 1 )
341 {
342 if ( VarNum >= 0 && sat_solver_var_value( pSat, VarNum ) )
343 Abc_InfoSetBit( pCex->pData, iBit );
344 iBit++;
345 }
346 assert( iBit == pCex->nBits );
347 Abc_CexFree( p->pSeqModel );
348 p->pSeqModel = pCex;
349 }
350 break;
351 }
352 if ( fUnique )
353 {
354 for ( i = 1; i < iLast; i++ )
355 {
356 for ( k = i+1; k < iLast; k++ )
357 {
358 if ( !Saig_ManStatesAreEqual( pSat, vState, Aig_ManRegNum(p), i, k ) )
359 continue;
360 nConstrs++;
361 fAdded = 1;
362 if ( fVeryVerbose )
363 printf( "Adding constaint for state %2d and state %2d.\n", i, k );
364 if ( Saig_ManAddUniqueness( pSat, vState, Aig_ManRegNum(p), i, k, &nSatVarNum, &nClauses, fVerbose ) )
365 break;
366 }
367 if ( k < iLast )
368 break;
369 }
370 if ( i < iLast )
371 {
372 RetValue = 1;
373 break;
374 }
375 }
376 if ( fAdded )
377 goto nextrun;
378 }
379 if ( fVerbose )
380 {
381 if ( nTimeToStop && Abc_Clock() >= nTimeToStop )
382 printf( "Timeout (%d sec) was reached during iteration %d.\n", nTimeOut, f+1 );
383 else if ( status == l_Undef )
384 printf( "Conflict limit (%d) was reached during iteration %d.\n", nConfMax, f+1 );
385 else if ( fUnique || fUniqueAll )
386 printf( "Completed %d iterations and added %d uniqueness constraints.\n", f+1, nConstrs );
387 else
388 printf( "Completed %d iterations.\n", f+1 );
389 }
390 // cleanup
391 sat_solver_delete( pSat );
392 Aig_ManStop( pAigPart );
393 Cnf_DataFree( pCnfPart );
394 Vec_IntFree( vTopVarNums );
395 Vec_PtrFree( vTop );
396 Vec_PtrFree( vBot );
397 Vec_IntFree( vState );
398 Vec_IntFreeP( &vTopVarIds );
399 return RetValue;
400}
ABC_INT64_T abctime
Definition abc_global.h:332
#define ABC_PRT(a, t)
Definition abc_global.h:255
Aig_Man_t * Aig_ManDupSimpleDfsPart(Aig_Man_t *p, Vec_Ptr_t *vPis, Vec_Ptr_t *vCos)
Definition aigDup.c:240
void Aig_ManSetCioIds(Aig_Man_t *p)
Definition aigUtil.c:978
void Aig_ManStop(Aig_Man_t *p)
Definition aigMan.c:187
void Aig_SupportNodes(Aig_Man_t *p, Aig_Obj_t **ppObjs, int nObjs, Vec_Ptr_t *vSupp)
Definition aigDfs.c:868
#define Aig_ManForEachCi(p, pObj, i)
ITERATORS ///.
Definition aig.h:393
struct Aig_Obj_t_ Aig_Obj_t
Definition aig.h:51
typedefABC_NAMESPACE_HEADER_START struct Aig_Man_t_ Aig_Man_t
INCLUDES ///.
Definition aig.h:50
#define Aig_ManForEachCo(p, pObj, i)
Definition aig.h:398
typedefABC_NAMESPACE_IMPL_START struct Vec_Int_t_ Vec_Int_t
DECLARATIONS ///.
Definition bblif.c:37
#define l_True
Definition bmcBmcS.c:35
#define l_Undef
Definition bmcBmcS.c:34
#define l_False
Definition bmcBmcS.c:36
#define sat_solver
Definition cecSatG2.c:34
#define sat_solver_solve
Definition cecSatG2.c:45
Cnf_Dat_t * Cnf_Derive(Aig_Man_t *pAig, int nOutputs)
Definition cnfCore.c:165
struct Cnf_Dat_t_ Cnf_Dat_t
Definition cnf.h:52
void Cnf_DataFree(Cnf_Dat_t *p)
Definition cnfMan.c:207
void Cnf_DataLift(Cnf_Dat_t *p, int nVarsPlus)
Definition cnfMan.c:232
Cube * p
Definition exorList.c:222
int Saig_ManAddUniqueness(sat_solver *pSat, Vec_Int_t *vState, int nRegs, int i, int k, int *pnSatVarNum, int *pnClauses, int fVerbose)
Definition saigInd.c:91
ABC_NAMESPACE_IMPL_START int Saig_ManStatesAreEqual(sat_solver *pSat, Vec_Int_t *vState, int nRegs, int i, int k)
DECLARATIONS ///.
Definition saigInd.c:48
sat_solver * sat_solver_new(void)
Definition satSolver.c:1137
void sat_solver_setnvars(sat_solver *s, int n)
Definition satSolver.c:1272
void sat_solver_delete(sat_solver *s)
Definition satSolver.c:1341
int Id
Definition aig.h:85
int CioId
Definition aig.h:73
void * pData
Definition aig.h:87
int nVars
Definition cnf.h:59
int * pVarNums
Definition cnf.h:63
int ** pClauses
Definition cnf.h:62
int nClauses
Definition cnf.h:61
stats_t stats
Definition satSolver.h:163
ABC_INT64_T conflicts
Definition satVec.h:156
void Abc_CexFree(Abc_Cex_t *p)
Definition utilCex.c:382
ABC_NAMESPACE_IMPL_START Abc_Cex_t * Abc_CexAlloc(int nRegs, int nRealPis, int nFrames)
DECLARATIONS ///.
Definition utilCex.c:51
typedefABC_NAMESPACE_HEADER_START struct Abc_Cex_t_ Abc_Cex_t
INCLUDES ///.
Definition utilCex.h:39
#define Vec_IntForEachEntry(vVec, Entry, i)
MACRO DEFINITIONS ///.
Definition vecInt.h:54
#define Vec_IntForEachEntryStart(vVec, Entry, i, Start)
Definition vecInt.h:56
typedefABC_NAMESPACE_HEADER_START struct Vec_Ptr_t_ Vec_Ptr_t
INCLUDES ///.
Definition vecPtr.h:42
#define Vec_PtrForEachEntry(Type, vVec, pEntry, i)
MACRO DEFINITIONS ///.
Definition vecPtr.h:55
Here is the call graph for this function:
Here is the caller graph for this function:

◆ Saig_ManStatesAreEqual()

ABC_NAMESPACE_IMPL_START int Saig_ManStatesAreEqual ( sat_solver * pSat,
Vec_Int_t * vState,
int nRegs,
int i,
int k )

DECLARATIONS ///.

CFile****************************************************************

FileName [saigLoc.c]

SystemName [ABC: Logic synthesis and verification system.]

PackageName [Sequential AIG package.]

Synopsis [K-step induction for one property only.]

Author [Alan Mishchenko]

Affiliation [UC Berkeley]

Date [Ver. 1.0. Started - June 20, 2005.]

Revision [

Id
saigLoc.c,v 1.00 2005/06/20 00:00:00 alanmi Exp

] FUNCTION DEFINITIONS /// Function*************************************************************

Synopsis [Returns 1 if two state are equal.]

Description [Array vState contains indexes of CNF variables for each flop in the first N time frames (0 < i < k, i < N, k < N).]

SideEffects []

SeeAlso []

Definition at line 48 of file saigInd.c.

49{
50 int * pStateI = (int *)Vec_IntArray(vState) + nRegs * i;
51 int * pStateK = (int *)Vec_IntArray(vState) + nRegs * k;
52 int v;
53 assert( i && k && i < k );
54 assert( nRegs * k <= Vec_IntSize(vState) );
55 // check if the states are available
56 for ( v = 0; v < nRegs; v++ )
57 if ( pStateI[v] >= 0 && pStateK[v] == -1 )
58 return 0;
59/*
60 printf( "\nchecking uniqueness\n" );
61 printf( "%3d : ", i );
62 for ( v = 0; v < nRegs; v++ )
63 printf( "%d", sat_solver_var_value(pSat, pStateI[v]) );
64 printf( "\n" );
65
66 printf( "%3d : ", k );
67 for ( v = 0; v < nRegs; v++ )
68 printf( "%d", sat_solver_var_value(pSat, pStateK[v]) );
69 printf( "\n" );
70*/
71 for ( v = 0; v < nRegs; v++ )
72 if ( pStateI[v] >= 0 )
73 {
74 if ( sat_solver_var_value(pSat, pStateI[v]) != sat_solver_var_value(pSat, pStateK[v]) )
75 return 0;
76 }
77 return 1;
78}
Here is the caller graph for this function: